Tupel
a
|
b
|
a × b
|
|
a
|
b
|
a
+ b
|
|
a
|
a’
|
0
|
0
|
0
|
|
0
|
0
|
0
|
|
0
|
1
|
0
|
1
|
0
|
|
0
|
1
|
1
|
|
1
|
0
|
1
|
0
|
0
|
|
1
|
0
|
1
|
|
|
|
1
|
1
|
1
|
|
1
|
1
|
1
|
|
|
|
a
|
b
|
c
|
b
+ c
|
a × (b
+ c)
|
a
× b
|
a
× c
|
(a × b) + (a × c)
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
a
|
b
|
a’
|
a’b
|
a + a’b
|
a + b
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1. Hukum identitas:
(i) a + 0 = a
(ii) a
× 1 = a
|
2. Hukum idempoten:
(i) a + a = a
(ii) a
× a
= a
|
3. Hukum komplemen:
(i) a + a’ = 1
(ii) aa’
= 0
|
4. Hukum dominansi:
(i) a × 0 = 0
(ii) a
+ 1 = 1
|
5. Hukum involusi:
(i) (a’)’ = a
|
6. Hukum penyerapan:
(i) a + ab = a
(ii) a(a + b) = a
|
7. Hukum komutatif:
(i) a + b = b + a
(ii) ab
= ba
|
8. Hukum asosiatif:
(i) a + (b + c) = (a + b) + c
(ii) a
(b c) = (a b) c
|
9. Hukum distributif:
(i) a +
(b c) = (a + b) (a + c)
(ii) a (b
+ c) = a b + a c
|
10. Hukum De Morgan:
(i) (a
+ b)’ = a’b’
(ii) (ab)’ = a’ + b’
|
11.
Hukum 0/1
(i)
0’ = 1
(ii) 1’ = 0
|
![]() |
x
|
y
|
z
|
f(x, y,
z) = xy z’
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
0
0
0
0
0
0
1
0
|
|
|
Minterm
|
Maxterm
|
|||
x
|
y
|
Suku
|
Lambang
|
Suku
|
Lambang
|
|
0
0
1
1
|
0
1
0
1
|
x’y’
x’y
xy’
x y
|
m0
m1
m2
m3
|
x
+ y
x
+ y’
x’
+ y
x’
+ y’
|
M0
M1
M2
M3
|
|
|
|
|
Minterm
|
Maxterm
|
||
x
|
y
|
z
|
Suku
|
Lambang
|
Suku
|
Lambang
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
x’y’z’
x’y’z
x‘y z’
x’y z
x
y’z’
x y’z
x
y z’
x y z
|
m0
m1
m2
m3
m4
m5
m6
m7
|
x
+ y + z
x + y + z’
x
+ y’+z
x
+ y’+z’
x’+
y + z
x’+
y + z’
x’+
y’+ z
x’+
y’+ z’
|
M0
M1
M2
M3
M4
M5
M6
M7
|
x
|
y
|
z
|
f(x, y,
z)
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
0
1
0
0
1
0
0
1
|
Bentuk Baku




















![]() |
|||||
![]() |
![]() |
||||

![]() |

![]() |






![]() |
|||||
![]() |
![]() |
||||


![]() |


![]() |
![]() |
![]() |





![]() |








![]() |
![]() |



![]() |
|||||
![]() |
|||||
![]() |
|||||





![]() |


![]() |
![]() |
![]() |
|||
![]() |
![]() |
![]() |
(b) Cara ketiga
Gerbang turunan
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
||
|
m0
|
m1
|
x 0
|
x’y’
|
x’y
|
|
m2
|
m3
|
1
|
xy’
|
xy
|
|
|
|
|
|
|
|
yz
00
|
01
|
11
|
10
|
|
m0
|
m1
|
m3
|
m2
|
|
x 0
|
x’y’z’
|
x’y’z
|
x’yz
|
x’yz’
|
|
m4
|
m5
|
m7
|
m6
|
|
1
|
xy’z’
|
xy’z
|
xyz
|
xyz’
|
x
|
y
|
z
|
f(x, y,
z)
|
|
|
0
|
0
|
0
|
0
|
|
|
0
|
0
|
1
|
0
|
|
|
0
|
1
|
0
|
1
|
|
|
0
|
1
|
1
|
0
|
|
|
1
|
0
|
0
|
0
|
|
|
1
|
0
|
1
|
0
|
|
|
1
|
1
|
0
|
1
|
|
|
1
|
1
|
1
|
1
|
|
|
|
yz
00
|
01
|
11
|
10
|
x 0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
yz
00
|
01
|
11
|
10
|
|
m0
|
m1
|
m3
|
m2
|
wx
00
|
w’x’y’z’
|
w’x’y’z
|
w’x’yz
|
w’x’yz’
|
|
|
m4
|
m5
|
m7
|
m6
|
|
01
|
w’xy’z’
|
w’xy’z
|
w’xyz
|
w’xyz’
|
|
m12
|
m13
|
m15
|
m14
|
|
11
|
wxy’z’
|
wxy’z
|
wxyz
|
wxyz’
|
|
m8
|
m9
|
m11
|
m10
|
|
10
|
wx’y’z’
|
wx’y’z
|
wx’yz
|
wx’yz’
|
w
|
x
|
y
|
z
|
f(w, x,
y, z)
|
|
|
0
|
0
|
0
|
0
|
0
|
|
|
0
|
0
|
0
|
1
|
1
|
|
|
0
|
0
|
1
|
0
|
0
|
|
|
0
|
0
|
1
|
1
|
0
|
|
|
0
|
1
|
0
|
0
|
0
|
|
|
0
|
1
|
0
|
1
|
0
|
|
|
0
|
1
|
1
|
0
|
1
|
|
|
0
|
1
|
1
|
1
|
1
|
|
|
1
|
0
|
0
|
0
|
0
|
|
|
1
|
0
|
0
|
1
|
0
|
|
|
1
|
0
|
1
|
0
|
0
|
|
|
1
|
0
|
1
|
1
|
0
|
|
|
1
|
1
|
0
|
0
|
0
|
|
|
1
|
1
|
0
|
1
|
0
|
|
|
1
|
1
|
1
|
0
|
1
|
|
|
1
|
1
|
1
|
1
|
0
|
|
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
1
|
0
|
1
|
01
|
0
|
0
|
1
|
1
|
11
|
0
|
0
|
0
|
1
|
10
|
0
|
0
|
0
|
0
|
|
|
|
|
|
Teknik Minimisasi
Fungsi Boolean dengan Peta Karnaugh
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
11
|
0
|
0
|
1
|
1
|
10
|
0
|
0
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
![]() |
1
|
1
|
1
|
1
|
10
|
0
|
0
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
![]() ![]() |
1
|
1
|
1
|
1
|
10
|
0
|
0
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
![]() |
1
|
1
|
0
|
0
|
10
|
1
|
1
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
![]() |
1
|
1
|
1
|
1
|
10
|
1
|
1
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
01
|
0
|
0
|
0
|
0
|
![]() ![]() |
1
|
1
|
1
|
1
|
10
|
1
|
1
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
![]() |
|
|
1
|
|
![]() ![]() ![]() ![]() ![]() ![]() |
1
|
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
![]() ![]() |
0
|
1
|
1
|
1
|
01
|
0
|
0
|
0
|
1
|
![]() |
1
|
1
|
0
|
1
|
10
|
1
|
1
|
0
|
1
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() |
0
|
1
|
0
|
0
|
![]() |
1
|
1
|
1
|
1
|
10
|
1
|
1
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() |
0
|
1
|
0
|
0
|
![]() |
1
|
1
|
1
|
1
|
10
|
1
|
1
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() ![]() |
1
|
0
|
0
|
1
|
11
|
1
|
0
|
0
|
1
|
10
|
0
|
0
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() ![]() ![]() ![]() |
1
|
0
|
0
|
1
|
![]() ![]() |
1
|
0
|
0
|
1
|
10
|
0
|
0
|
0
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() |
0
|
1
|
0
|
0
|
![]() ![]() ![]() |
0
|
1
|
1
|
0
|
10
|
0
|
0
|
1
|
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
0
|
0
|
0
|
![]() |
0
|
1
|
0
|
0
|
![]() |
0
|
1
|
1
|
0
|
10
|
0
|
0
|
1
|
0
|
|
cd
00
|
01
|
11
|
10
|
ab 00
|
0
|
0
|
0
|
0
|
![]() |
0
|
0
|
1
|
0
|
![]() ![]() ![]() ![]() |
1
|
1
|
1
|
1
|
10
|
0
|
1
|
1
|
1
|
|
yz
00
|
01
|
11
|
10
|
![]() ![]() |
|
1
|
1
|
1
|
1
|
|
1
|
1
|
|
Peta Karnaugh untuk lima peubah
00
|
m0
|
m1
|
m3
|
m2
|
m6
|
m7
|
m5
|
m4
|
01
|
m8
|
m9
|
m11
|
m10
|
m14
|
m13
|
m12
|
|
11
|
m24
|
m25
|
m27
|
m26
|
m30
|
m31
|
m29
|
m28
|
10
|
m16
|
m17
|
m19
|
m18
|
m22
|
m23
|
m21
|
m20
|
![]() |
|
|
|
|
|
|
|
|
|
|
xyz
000
|
001
|
011
|
010
|
110
|
111
|
101
|
100
|
|
![]() ![]() ![]() ![]() ![]() |
vw 00
|
1
|
|
|
1
|
1
|
|
|
1
|
|
![]() ![]() ![]() ![]() |
01
|
|
1
|
1
|
|
|
1
|
1
|
|
|
![]() ![]() ![]() ![]() ![]() ![]() |
11
|
|
1
|
1
|
|
|
1
|
1
|
|
|
![]() ![]() |
10
|
|
1
|
|
|
|
|
1
|
|
|
w
|
x
|
y
|
z
|
desimal
|
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
|
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
|
0
1
2
3
4
5
6
7
8
9
don’t care
don’t care
don’t care
don’t care
don’t care
don’t care
|
a
|
b
|
c
|
d
|
f(a, b,
c, d)
|
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
|
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
|
1
0
0
1
1
1
0
1
X
X X X X X X X |
|
cd
00
|
01
|
11
|
10
|
![]() ![]() |
1
|
0
|
1
|
0
|
![]() |
1
|
1
|
1
|
0
|
11
|
X
|
X
|
X
|
X
|
10
|
X
|
0
|
X
|
X
|
![]() |
|
yz
00
|
01
|
11
|
10
|
![]()
x 0
|
|
|
1
|
1
|
![]()
1
|
1
|
1
|
|
|
![]() |
|
Masukan BCD
|
Keluaran kode Excess-3
|
||||||
|
w
|
x
|
y
|
z
|
f1(w, x,
y, z)
|
f2(w, x,
y,z)
|
f3(w, x,
y, z)
|
f4(w, x,
y, z)
|
0
1
2
3
4
5
6
7
8
9
|
0
0
0
0
0
0
0
0
1
1
|
0
0
0
0
1
1
1
1
0
0
|
0
0
1
1
0
0
1
1
0
0
|
0
1
0
1
0
1
0
1
0
1
|
0
0
0
0
0
1
1
1
1
1
|
0
1
1
1
1
0
0
0
0
1
|
1
0
0
1
1
0
0
1
1
0
|
1
0
1
0
1
0
1
0
1
0
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
|
|
|
|
![]() ![]() |
|
1
|
1
|
1
|
![]() |
X
|
X
|
X
|
X
|
![]() |
1
|
1
|
X
|
X
|
![]() ![]() ![]() ![]() |
yz
00
|
01
|
11
|
10
|
![]() ![]() |
|
1
|
1
|
1
|
![]() |
1
|
|
|
|
11
|
X
|
X
|
X
|
X
|
![]() ![]() ![]() ![]() ![]() ![]() |
|
1
|
X
|
X
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
1
|
|
1
|
|
01
|
1
|
|
1
|
|
11
|
X
|
X
|
X
|
X
|
10
|
1
|
|
X
|
X
|
|
yz
00
|
01
|
11
|
10
|
![]() ![]() ![]() ![]() |
1
|
|
|
1
|
01
|
1
|
|
|
1
|
11
|
X
|
X
|
X
|
X
|
![]() ![]() |
1
|
|
X
|
X
|
![]() |
0 komentar:
Posting Komentar
Click to see the code!
To insert emoticon you must added at least one space before the code.